Density of Frames and Schauder Bases of Windowed Exponentials

نویسندگان

  • CHRISTOPHER HEIL
  • GITTA KUTYNIOK
  • Vern I. Paulsen
چکیده

This paper proves that every frame of windowed exponentials satisfies a Strong Homogeneous Approximation Property with respect to its canonical dual frame, and a Weak Homogeneous Approximation Property with respect to an arbitrary dual frame. As a consequence, a simple proof of the Nyquist density phenomenon satisfied by frames of windowed exponentials with one or finitely many generators is obtained. The more delicate cases of Schauder bases and exact systems of windowed exponentials are also studied. New results on the relationship between density and frame bounds for frames of windowed exponentials are obtained. In particular, it is shown that a tight frame of windowed exponentials must have uniform Beurling density.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weaving Schauder frames

We extend the concept of weaving Hilbert space frames to the Banach space setting. Similar to frames in a Hilbert space, we show that for any two approximate Schauder frames for a Banach space, every weaving is an approximate Schauder frame if and only if there is a uniform constant C ≥ 1 such that every weaving is a C-approximate Schauder frame. We also study weaving Schauder bases, where it i...

متن کامل

A Characterization of Schauder Frames Which Are Near-schauder Bases

A basic problem of interest in connection with the study of Schauder frames in Banach spaces is that of characterizing those Schauder frames which can essentially be regarded as Schauder bases. In this paper, we study this problem using the notion of a minimal-associated sequence space and a minimal-associated reconstruction operator for Schauder frames. We prove that a Schauder frame is a near...

متن کامل

Frames and orthonormal bases for variable windowed Fourier transforms

We generalize the windowed Fourier transform to the variable-windowed Fourier transform. This generalization brings the Gabor transform and the wavelet transform under the same framework. Using frame theory we characterize frames and orthonormal bases for the variable windowed Fourier series (VWFS). These characterizations are formulated explicitly in terms of window functions. Therefore they c...

متن کامل

G-Frames, g-orthonormal bases and g-Riesz bases

G-Frames in Hilbert spaces are a redundant set of operators which yield a representation for each vector in the space. In this paper we investigate the connection between g-frames, g-orthonormal bases and g-Riesz bases. We show that a family of bounded operators is a g-Bessel sequences if and only if the Gram matrix associated to its denes a bounded operator.

متن کامل

A characterization of L-dual frames and L-dual Riesz bases

This paper is an investigation of $L$-dual frames with respect to a function-valued inner product, the so called $L$-bracket product on $L^{2}(G)$, where G is a locally compact abelian group with a uniform lattice $L$. We show that several well known theorems for dual frames and dual Riesz bases in a Hilbert space remain valid for $L$-dual frames and $L$-dual Riesz bases in $L^{2}(G)$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006